
Journal of Statistical Physics, Vol. 78, Nos. 3/4, 1995 

Corrections to the Critical Temperature 
in 2D Ising Systems with Kac Potentials 

M. Cassandro, 1 R. Marra, 2 and E. Presutti 3 

Received June 10, 1994; final September 12, 1994 

We consider a d =  2 Ising system with a Kac potential whose mean-field critical 
temperature is 1. Calling y > 0 the Kac parameter, we prove that there exists 
c* > 0 so that the true inverse critical temperature Per(Y) > 1 + by" log y -  1, for 
any b < c* and y correspondingly small. We also show that if Y -* 0 and b --* c*, 
suitably, then the correlation functions (normalized and rescaled) converge to 
those of a non-Gaussian Euclidean field theory. 

KEY WORDS: Kac potential; Ising model; critical fluctuations; Euclidean 
field theory. 

In this short communication we report some results we have obtained 
studying the d =  2 Ising model with Kac potentials; details of the proofs 
will follow in an extended version of this note. Recall that the Kac 
Hamiltonian ~1~) is 

H~,(a)= - �89 ~ J~,(x, y) a ( x ) a ( y )  (1.1) 
x~)' 

where the spins are a(x )=  4-1, x e •d, and the coupling strength is 

J~(x, y) = cG't](~ Ix - Yl ), ~ Jr(x, y) = 1 

" ~~ (1.2) 

f d r J ( [ r l ) = l ,  D:= fa2drJ ( I r l ) rZ  
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We suppose J ( [ r ] )> /0  and, to fix ideas, we take J "smooth ,"  J ( [ r [ ) > 0  for 
Jr[ < 1 and J(]r[) = 0  for [r[ >/1. Here ) , > 0  is the scaling parameter  of the 
Kac  potential  and cr is a normalizat ion constant  that  goes to 1 as y ~ 0. 

The topics we are going to discuss are: 

I. The corrections to the mean-field (Lebowi tz -Penrose)  inverse 
tier, namely the deviations from flcL~ of the critical temperature  LP 

true inverse critical temperature  f t , (y)  for the system with inter- 
action J~. 

2. The derivation of the 4~4 Euclidean field theory when y ~ 0, with 
fl a suitable function ofy. 

We will see in Theorem 1 that  fl~r(Y) is strictly larger than 1 and that  
the deviations have order y21og~,-l .  In Theorem 2 we prove that the 
correlation functions of the Ising model suitably scaled and normalized 
converge as y ~ 0  to the moments  of a non-Gauss ian  Euclidean field 
theory. 

The corrections to the critical temperature  have been studied in ref. 5 
for a d =  3 Ising system with a specific choice of  the Kac  potential  and the 
deviation from mean field is Coy2+o(y2), with Co explicitly known. 
However,  to avoid spurious fluctuations of fl~r(Y) as y varies, one should 
compare  systems at different y with the same total interaction strength 
Z Jr(0, x). For  this reason we have introduced the parameter  c~. in (1.2). 
This convention is not used in ref. 5, where the total interaction strength is 
equal to 1 + Coy 2. With our normalizat ion (1.2) the result in ref. 5 becomes 

1 ~< 8~r(~) ~< 1 + 0(~-') (1.3) 

and there is no correction to the inverse critical temperature  of the order 
of)  ,2. 

Condit ion (1.3) shows that 8cr(~/)--* 1 as ~,--* 0. Even if this is generally 
believed to hold in d~> 2, to our  knowledge this has not yet been proved. 
A possible way is to find lower and upper  bounds that  squeeze 8or(Y) to 1 
as ~--. 0. For  the upper  bound we only have a conjecture: 

Conjecture. For  any 8 >  1 there is 7 ( 8 ) > 0  so that  for all ~,'---<)'(8), 

8or(~) < 8. 

A proof  of this conjecture exists when reflection positivity may be 
applied, as in the original Kac  potential  and in the model considered in 
ref. 5; see (1.3). In general the proof  should follow from a Peierls argu- 
ment  complemented by some large-deviation estimates and bounds on the 
surface tension. Some progress on the last two issues has been recently 
obtained.t13'~ 
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The other side of the bound comes from mean field, as observed in 
ref. 5. It  is known that f l , (y)>~flCt~=l ,  as we will discuss later. Thus, 
assuming the validity of the Conjecture, we conclude that flCr(~)~ 1 as 

~ 0. The next question concerns the rate of convergence. Our  results will 
show that  tier(Y)> 1 (strictly, for ~ > 0) and that  the deviations from 1 are 
responsible for the Wick regularization and the convergence of the block 
spin variables to a non-Gauss ian  Euclidean field theory. Let us be more  
precise, starting from the first statement:  

T h e o r e m  1. For  any b < c *  := 1/(rtD), D as in (1.2), there is 
y ( b ) > 0  so that  for all 0 < y ~ < y ( b )  

tier(Y) >/fib(?) := 1 + b? 2 log y - 1 (1.4) 

This theorem suggests we study the critical behavior  by letting b ~ c* 
as ~ ~ 0. The analysis of this limit is in the same spirit of the cont inuum 
limit considered, for instance, in the works of Aizenman, t2'3~ Sokal, tlS~ 
Fr6hlich, tg~ and Brydges et al. ~6~ and references therein, where they prove 
convergence to ~b 4 in d =  2, 3 and to a Gauss ian  field in higher dimensions, 
using, and exploiting, the relation with Ising systems and statistical 
mechanics. Our  systems do not seem to be included, at least explicitly, in 
the class considered in the above papers and we have worked out a specific 
p roof  that  has the advantage of making explicit the relation between the 
shift of  the critical temperature,  the origin of the Wick regularization term, 
and the fluctuation strength. 

We study the convergence of the block spin variables by considering 
the normalized and scaled correlation functions. We denote by (.)b,~. the 
expectat ion with respect to the Gibbs  measure with interaction Jr  and 
inverse temperature  fib(Y); see (1.4). By Theorem 1 for ~ < ~(b) there is only 
one Gibbs  state and no ambiguity may arise. Sometimes we will write 
( . ) a . r  for the expectat ion with respect to the Gibbs  measure at the inverse 
temperature  ~. 

F rom the proof  of Theorem 1 it follows that  the correlations decay on 
the scale 

- 2  
Y 

lb,~. = .[(c* - b) log ), - 1] J/2 (1.5) 

Thus, in interaction-length units, the correlation length is 

1 
ylb.~ -- [flc*(Y) -- fib(Y)] ,/2 (1.6) 
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This is the result predicted by mean-field theory, because the scaling expo- 
nent of the correlation length, in interaction-length units, with respect to 
the inverse temperature  difference is 1/2. Thus the mean-field critical expo- 
nent is "correct" when the temperature  "is not too close" to critical, i.e., 
b < c*, as in (1.4). (This remark complements  that  of Aizenman about  the 
validity of mean field for comput ing critical exponents in d > 4 ;  see the 
beginning of Section 4 in ref. 3). Notice, however, that  Theorem 1 does not 
tell us that/3c.(7) is the true inverse critical temperature;  the r.h.s, of (1.6) 
is only an upper  bound to the critical exponent.  

On the other hand, we expect a change of behavior  when the distance 
of the inverse temperature  from /~c*()') is of  the order of )'2. We in fact 
prove in Theorem 2 below that our  system behaves as a massive local 
field theory when b--,  c* and )' ~ 0 (suitably) and the value of the mass 
is proport ional  to the coefficient multiplying the term in )'2 of the inverse 
temperature  difference. Therefore, when the inverse temperature  varies on 
the scale ),2, we expect to recover the n.n. Ising critical exponent.  

We introduce the normalized and rescaled correlations 

Sb.y(rJ ..... 1"2,,)=)' 2"(o(lb,~,rl)" " 'G( lb ,  yr2n)  )b,}, (1.7) 

where lb,~,r; should be replaced by its integer part,  and all sites are sup- 
posed distinct. We have the following result: 

T h e o r e m  2. There is t o > 0  so that the following holds. For  any 
~< go there is b~, such that 

lim [(c* -b~.) log )'-t]~/2 = e - t  (1.8) 
7 ~ 0  

and for any n and any distinct r~ ..... r2,,, 

lim Sb.~.(r I ..... r2,) = S( ')(rl  ..... r2,,) (1.9) 
1,40 

The Schwinger functions S ~) are continuous in {r;~rj} ,  and for any test 
function if(r1 ..... r2,,), 

dr1 "'"  dFzn Sb,,~,(rt ..... Fzn) ~(/ '1 ..... r2n) lim 

= I drl---dr_~,, S~'~(r, ..... rz,,) ~ (r l  ..... rz,,) (1.10) 

The functions S c~) satisfy a recursive relation that is also satisfied by the 
Schwinger functions of the ~4 Euclidean theory with interaction strength 
2 =  1 and mass ~-J.  In particular,  the truncated correlation functions 
constructed from S ~ are not identically 0. 
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Without entering into the proofs of the two theorems, we just want to 
outline some points that may be of interest. We recall that by using the 
Dobrushin's techniques for the uniqueness of Gibbs measures, c7) we get for 
the Vasserstein distance Rx(a, a') between the conditional probabilities at 
x given two different boundary conditions a and a', 

R,(a,  a') ~</3 ~ J~(x, y) l a ( y ) -  a(y')l 
y ~ X 

(1.11) 

Recalling (1.2), the Dobrushin uniqueness condition /3~,J~.(x, y ) < l  is 
satisfied for all [3< 1 and all 7, hence/3cr(7) ~> 1. The same analysis in ref. 7 
allows one to derive bounds for the correlation functions, which in the case 
of the two-point correlation yields 

hence 

<a(O) a(x)>,q,;, <~ fl Y" Jr(x, y)< a(O) a(y)>~,,, + 2flJ~(x, O) 
y s~ 0 

(1.12) 

< o-(o) o-(x) >~.,. ~< 2 [ (1  - ,6'J~.)- ' ].-,.o 

On the other hand, by the DLR equations, 

(1.13) 

<a(O)a(x)>#.~=<a(O)tanhflh~,(x)>a,r, h~(x)= Y' J~.(x,y) a(y) (1.14) 
y # x 

By Taylor expanding the hyperbolic tangent and retaining only the first 
two terms [as can be rigorously justified using Newmann's Gaussian 
inequalities, t~4) and (1.13)] we get 

< ~ r ( O ) c r ( x ) > f l . ~ , ~ f l < c r ( O ) h ; , ( x ) > # . v - l f l 3 < c r ( O ) h ~ , ( x ) 3 > B . ~  ( 1 . 1 5 )  

Given any fl < 1, it is not difficult to see, using the previous arguments, that 
also the last term is of higher order, in the limit as 7 ~ 0. We can then solve 
(1.14) and more generally we find that for any n~>l and any distinct 
r~ ..... r2,, (and in any dimension d) 

lim 7-2"<o(y-',',)...a(7-'r2,,)>p.~,= ~ fi G(ro-r j ,  ) (1.16) 
7 ~ 0 pa i r ings  / =  1 

where G = Gt and 

1 - r:/_,o, (1.17) G,(r) = ~ e 
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D is as in (1.2). The bound (1.12) is quite accurate when f l <  1 is kept  fixed 
as y ~ 0, but it starts deviating from the correct one as soon as fl = 1 - y2. 
We can rewrite (1.15) as 

(a(O) a(x))t3,~, ~ (/~-/~3Ct~,v)(~(O) h~(x))r �89 h~(x)3)~.r (1.18) 

where ( . ) v  is the truncated correlation function and //,1' 

5+0 
for fl=/~b(7), b<c* (1.19) 

[An upper  bound of the right order at /~ = 1 - 7  2 follows directly from 
(1.12).] Because of the Gaussian structure of the correlations, evidenced by 
(1.16), we should have, and we actually do have, that the truncated 
correlation function may  be neglected as y ~ 0. 

F rom (1.18) and (1.19) and after some computa' t ions,  we then see that  
the effective temperature  is 

fl -/33Ctj.~. =/~ - c*~-' log y - ' + O(y 2) (1.20) 

This establishes the relation between the temperature  shift and the Wick 
regularization (i.e., replacing a correlation function by the truncated one). 
The same mechanism was observed in ref. 5 in a d =  3 lattice approxima-  
tion of ~b4; see also ref. 6. 

The hard part  in the proof  of Theorems 1 and 2 is to extend the 
validity of the above considerations beyond f l =  1. We achieve that by 
making an ansatz on bounds on the correlation functions. We then prove 
(this part  of the argument  is relatively simple) that the ansatz is consistent 
with the equations that are obtained by applying the D L R  equation to 
correlation functions of any order [similar to those in {1.14) for the two- 
body terms].  We then need to prove that  the actual correlations satisfy the 
ansatz and this is done by a continuity argument  starting from fl = 1 - y 2 .  
In this part  we use extensively Newmann ' s  Gaussian inequalities and 
convexity properties of the pressure to prove uniqueness of the even 
correlation functions. With this information we can then modify the usual 
mean-field argument  for the magnet izat ion proving that  also at fib(Y), 
b < c*, it is equal to 0, thus obtaining Theorem 1. To  prove Theorem 2 we 
use Aizenman's  inequality on the four-point  truncated correlat ion function 
to have a closed inequality for the two-point  correlations, which can be 
solved till b= c* if e-~ in (1.8) is large enough. By using an argument  by 
contradiction we finally prove the existence of a nontrivial limit. 
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C O N C L U D I N G  R E M A R K S  

Very schemat ica l ly  we present  mo t i v a t i o n s  and  some of the m a i n  open  
p rob lems  we would  like to study. 

1. Unsa t i s fac tory :  we wou ld  like to work  at ), small  bu t  nonze ro  and  
fl = t i c . -  aY z, a > 0, an d  a--+ 0. Aim: crossover  from m e a n  field to 
n.n. Is ing critical exponen t ;  see the d iscuss ion fol lowing (1.6). 

2. Or ig ina l  mo t iva t i on :  Jona -Las in io ' s  p roposa l  t~~ of s tochast ic  
q u a n t i z a t i o n  via part ic le  dynamics ,  in our  case the G l a u b e r  
dynamics ,  name ly  to derive stochast ic  P D E s  whose i nva r i an t  
measure  is the 4, 4 Euc l idean  field theory.  This  is the dynam ica l  
ana log  of the a p p r o a c h  to cons t ruc t ive  ~b 4 theories via Is ing 
models ,  with the belief that ,  as in equi l ib r ium,  this m ay  lead to 
subs tan t i a l  s implif icat ions.  Results  in d =  1 have been a l ready 
obta ined.I  4,s~ 

3. d = 3 ?  
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